Grade R Numerosity Levels and Gaps: A Case of South African Learners in the Eastern Cape

Nosisi Nellie Feza1,2 & Shakespear Maliketi Chiphambo2

1 University of Venda, South Africa.
2 Walter Sisulu University, South Africa.

ABSTRACT
Developing young learners’ knowledge in number sense is a priority if the aim is to build a rich mathematical foundation for successful learning and future innovative careers. Capturing students’ interests and motivation is crucial while mediating counting concepts. Literature directs practice on the important core concepts that are foundational in developing number sense. This paper therefore assessed how young South African children demonstrated number concepts before entering the reception class. The paper revealed the diverse knowledge attained by children in different settings before embarking on formal education. A qualitative analysis was employed using Clements and Sarama’s learning trajectories as an analytical tool for children’s counting progression. The findings indicated that children’s start mathematically is uneven with either fully or partially attained number concepts, for example, one-to-one correspondence, counting on, cardinality, and equality. Furthermore, the findings revealed that a lack of particular numerical skills such as keeping track while counting, reciter, and sequential verbal counting beyond 10 impede learners’ full realisation of understanding numerical concepts. The findings suggest pre-schooling stimulation that provides rich mathematical experiences and purposeful play towards the attainment of core foundational concepts. It was, therefore, recommended that Grade R Mathematics teachers intervene earlier during preschool to assist learners specifically from low socioeconomic backgrounds and mathematise learners’ play and activities to enhance their semi-attained numerical abilities. This paper informs the mathematics education community of the need for future interventions and a curriculum designed to improve these skills in young children. This could have a positive impact on long-term academic success and close the numeracy gap which is existing in mathematics achievement between high and low-income children.

Keywords: Numeracy, Trajectories, Innate Abilities, Counting, Grade R

INTRODUCTION
Research shows that South African learners’ Mathematics and literacy performance has been standing at a comparatively lower level both regionally and internationally.1 Furthermore, the performance gaps in Mathematics accentuated by socio-economic status are at the extreme.2 Since the dawn of democracy,
South Africa has prioritized redressing inequalities that existed in education. Education is considered a potent tool for redressing persistent economic inequality. This paper discusses the Grade R learners’ numerosity levels and gaps in the Eastern Cape province of South Africa. Below is a brief description of the South African education system.

In South Africa, the education system is pitched at different levels integrated into a National Qualifications Framework as outlined by the South African Qualification Authority Act (SAQA) of 1996. SAQA established a seamless system of education to adapt South African citizens of all ages at distinct instructional levels. The instructional levels are summarized below:

- **Pre-primary education**: an optional level for young children up to the age of six years, Grade R and any level below that. This level is commonly known as the Early Childhood Development (ECD) phase.
- **Primary education** (**grades 1 to 6**): for children between 6 and 12 years of age (older children are allowed to attend).
- **Junior secondary education** (**grades 7 to 9**): offered to children between 12 and 15 years of age. The first year of junior schooling is offered at the primary school level while the successive two years are offered in senior secondary schools.
- **Senior secondary education** (**grades 10 to 12**): for students between 16 and 20 years of age (older students are allowed to attend). The academic training or vocational and technical education and training are provided at this level. The general education programmes offered last for three years while technical programmes last for 2, 3, or 4 years.

Number sense dominates mathematical concepts across the school Mathematics curriculum; hence, it is important to understand it as a foundational building block for young learners. Nurturing number sense in young children must be associated with their interests that can only be identified through their play. Literature asserts that the diverse experiences of young children prior to formal education provide them with different numerical abilities. These diverse abilities play a significant role in children’s development of numerical fluency while it is recognised that low performance is proven to be associated with limited numerical experiences. The latter is associated with the notion that some learners start with Numeracy knowledge gaps as compared to their peers. Aunio and Räsänen suggest four core numerical skills in numeracy development that are symbolic and non-symbolic number sense, understanding mathematical relations, counting skills, and basic skills in arithmetic that children need to attain. South Africa formalised the provision of Grade R/ reception class by including it in schools and making it universal. This implies that before Grade R, some children attend preschools, and others stay at home due to access and affordability constraints.

Based on the nature and diversity of preschool provision in South Africa, one cannot assume gaps and existing numeracy abilities from the young learners. Numerosity is considered a foundational mathematics skill often overlooked in early childhood education, this paper sheds light on the current state of numerosity levels and gaps in grade R. This paper reports on pre-Grade R learners’ numerical abilities to identify the preschool and home stimulation influence on their numerosity as well as identify the learning gaps. The paper therefore responds to the following research question: How does preschool and home stimulation received by Grade R learners from low socio-economic backgrounds present itself in their numeracy observable abilities?

4 Aunio and Räsänen, “Core Numerical Skills for Learning Mathematics in Children Aged Five to Eight Years – a Working Model for Educators.”

5 Aunio and Räsänen, “Core Numerical Skills for Learning Mathematics in Children Aged Five to Eight Years – a Working Model for Educators.”
In the literature review section, the following subtopics are presented and discussed: subitising, importance of subitising, verbal/rote counting, one-to-one correspondence, cardinality principle, numerical spatial sense and spatial thinking skills.

LITERATURE REVIEW
The literature presented in this paper is focused on crucial foundational concepts of counting related to the interview items used in this paper. It is important to note that counting for young children requires both procedural skills as well as conceptual understanding and their interdependence on one another.\(^6\)

Subitising
The term subitising was created by Piaget and described as the ability to rapidly identify the number of objects in a small group without counting them.\(^7\) Clements discusses subitising as an important skill that is innate in children for small numbers to three, and he labels this spontaneous subitising.\(^8\) Breive posits that three-year-olds can subitise up to three while the majority of adults can subitise all faces of dice without counting.\(^9\) Clements affirms that spontaneous subitising is not an indication that children can count but a precursor to counting. He encourages the development of conceptual subitising for meaningful counting.\(^10\) This process, innate to all humans, is typically known as perceptual subitising and forms an element of the preverbal number sense.\(^11\) In short, perceptual subitising is recognising numerosity without using other mathematical processes.\(^12\)

Importance of Subitising
Subitising assists children in linking numbers with actual objects or groups of objects a process called number conservation. Fuson proposes that young children may use perceptual subitising to make units of counting building on to their initial ideas of cardinality.\(^13\) It nurtures children’s composition of numbers, for example, five is composed of three and two, it also becomes a foundational block for building part-whole relationships that will eventually increase their understanding of addition and subtraction.

It is conceptual subitising that develops from children’s patternning abilities to advance groups of numbers beyond five. This skill develops their arithmetic abilities.\(^14\) Baroody asserts that subitising is an essential skill for developing students’ meaningful number sense.\(^15\) Different studies indicate number concepts that are reinforced by conceptual subitising such as equality, composition, decomposition, partitioning and addition.\(^16\)

Verbal Counting/Rote Counting
Verbal counting/rote counting occurs intentionally or unintentionally when a student has memorised the numerical words chronologically.\(^17\) Children practise rote counting long before it makes any sense to them before they grasp that the numbers signify the quantity of something. This counting has a significant role in the development of the number sense of a learner at this level and it is a skill that needs to be mastered. In her study, Feza states that some five-year-olds who could not do verbal counting got stuck at counting objects because they had not yet mastered the sequence of numbers.\(^18\) In their attempt to do object

\(^9\) S. Breive, “Processes of Mathematical Inquiry in Kindergarten” (University of Agder, 2019).

\(^12\) Clements, “Subitising: What Is It? Why Teach It?”

\(^17\) Feza, “Teaching 5- and 6-Year-Olds to Count: Knowledge of South African Educators.”
counting, their counting could not be accurate as they skipped some number words or went back to repeat others. Memorising sequential number words became a tool needed to be able to successfully engage in object counting. Clements, Clements and Sarama, and Wu suggest that counting games, counting songs, counting rhymes, and jumping games should be used to mediate sequential rote counting.19

Researchers found that learners’ rote counting varies if they attain productivity via different routes in different languages, for example, if the language is of greater transparency or if the learners received lengthy and comprehensive rote learning in the early childhood stage.20 This implies that language of instruction and exposure to deep learning activities on number senses play a prominent role in supporting learners’ rote counting.

Other scientific studies have shown that young children understand the concept of numbers before they enter the school system, for example, a child can give five candles; can count verbally in the correct sequence, i.e. one, two, three……and can use this sequence in counting objects, family members, friends, etc; and comparing the numerical size of separate sets (** vs. * or 3 vs. 2).21 These basic number skills are the basis for learning basic arithmetical skills for learners in their earliest years in school.22

One to One Correspondence
Clements and Sarama refer to this level of counting as object counting. It is a progressive skill that comprises counting each object in a set once, and only once with one touch per object.23 Furthermore, it refers to a relationship between two sets such that every component of the first set matches one, and only one component of the second set.24 One-to-one correspondence empowers children to comprehend the number system and affords an elementary foundation to build on.25 Grasping one-to-one correspondence nurtures structure for meaningful counting although it is not easy for children to understand.26

Cardinality Principle
In describing the cardinal principle, Nikoloska describes it as identifying the last number used in counting to determine the cardinality of the set.27 For example, if a child counts some objects and is asked the question “How many?” they should be able to repeat the last number if they have seized the principle of cardinality. Wynn argues that being able to give the cardinal number does not mean the child understands the cardinality principle as it might be possible that it is a “last word rule” that is used by the child.28 Piaget, and Gelman and Gallistel indicate that cardinal numbers quantify sets, for example, three pigs, five friends, two apples and so on.29 Baroody and Gatzke define cardinality as the child’s acknowledgement that the last number counted includes the whole group of items counted.30 Wynn then proposes the use of diverse tasks to determine understanding of the cardinality principle.31 Hence, Clements and Sarama hypothesised developmental progressions in counting leading to cardinality that is verbal counting followed by sequential verbal counting, and object counting which has skills such as tracking for accuracy.32 These are skills that are building blocks for counting before meaningful counting of objects

that will then lead to cardinality. Therefore, cardinality can be mediated through repeated routines suggested by Fuson and Wynn such as three bananas, “one, two, three”. Mix confirms that children’s attainment of the cardinal principle leads to recognition of equivalence relations and construction of number representations at the age of three to four.

Numerical Spatial Sense

A numerical spatial sense is the ability to rapidly estimate quantities of items without being confused by their spatial positioning. Anobile et al. describe the numerical spatial sense as an ability to make intrinsic linkages between Mathematics and spatial awareness. In counting, the spatial numerical sense is linked with one-to-one correspondence as children need the skill for them to be able to develop cognitively as stated by Piaget. Sophian elaborates this association using two rows with an equal number of objects, with the other row stretched longer than the other by increasing the distance between them. This implies that the student who understands one-to-one correspondence will count both rows and see that they have the same number of objects whereas students with no understanding of one-to-one correspondence will not be able to see them as equivalent.

Current studies on numerical, spatial, and executive function (EF) skills reveal that each plays critical and independent roles in the learning and performance of Numeracy in learners. Research hypothesises that spatial visualisation has a significant role in assisting learners with the ability to model, simulate and form mathematical relationships and transformations, for example, the ability to decompose 15 as the unit of 10 and 5. Moreover, these are the same spatial reasoning capacities that help learners with the grounded understanding of various symbolic number relations, learning and representation of symbolic Mathematics in general.

Spatial Thinking Skills

Scientific studies have shown that there is an association between spatial thinking and performance across a wider breadth of mathematical topics. Spatial skills contribute positively to mathematical topics, for example, arithmetic, word problems, geometry and algebra. Spatial thinking also forms a foundation for highly advanced Mathematics such as function theory, mathematical logic, computational mathematics and comparing, i.e., which digit is numerically larger than the other between 7 and 2. It is further directly linked with spatial visualisation skills, such as mental rotation. Findings related to spatial

40 Hawes et al., “Relations between Numerical, Spatial, and Executive Function Skills and Mathematics Achievement: A Latent-Variable Approach.”
thinking like these inform academics in Mathematics education to have a keen interest in advancing learners’ spatial thinking skills as they have a positive impact on Mathematics performance.

A study conducted by Thomas established that kindergarten children had a great deal of knowledge about shapes and matching shapes before instruction began which is contrary to the assumption that teachers and curriculum writers in some countries hold that learners in early childhood classrooms have little or no knowledge of geometric figures. Thus, it is because of the later assumptions that many classrooms exhibit limited geometry instruction. Clements, Swaminathan, Hannibal, and Sarama’s study exploring learners’ spatial understanding found that learners identified circles quite accurately: 92%, 96%, and 99% for 4-, 5-, and 6-year-olds respectively. Most of them described the circle as round if they described them at all. Thus, it was easy to recognise the circle, and on the other hand, it was relatively difficult to describe its properties. The study further revealed that learners were able to match the shapes to a visual prototype provided.

METHODOLOGY

The study employed a qualitative approach guided by the case study design. The case study design was opted for as it allows researchers to explore a real-life or contemporary bounded system (a case) over time, through comprehensive, in-depth data collection involving numerous sources of information and reports a case explanation and case themes. Clinical interviews as employed by Van Hiele and Clements to identify the thinking levels of children are administered to pre-Grade R learners to identify their numeracy levels of thinking. A qualitative analysis was employed using Clements and Sarama’s learning trajectories as an analytical tool for counting progression. The use of these learning trajectories was influenced by the support this theory receives in researching numeracy globally. This theory influences the conceptualisation of this study as well as the early childhood mathematics literature. A thematic report is presented as the findings of the paper.

This paper reported on data from a three-year NRF-funded study selecting only five learners that represent the majority, based on their responses. Three items from the clinical interview instrument were selected to identify the numerical skills and numerical knowledge learners possess. A qualitative analytical approach was used to analyse learners’ responses using the learning trajectory theory of Clements and Sarama. The three selected items bring diverse ways of exploring learners’ numeracy skills.

- Item 1 is free play with counters (unifix cubes).
- Item 2 is a quantity recognition item.
- Item 3 is a matching item for symbolic numbers with objects.

PRESENTATION OF FINDINGS

The biographical information from the data revealed that out of five students composed of three boys and two girls, three attended preschool and two did not attend preschool at all. Four themes merged from the analytic analyses and are presented below.

Diverse levels of one-to-one correspondence

To test learners’ counting skills they were given two sets of counters as shown in Figure 1 below:

Researcher: Please count the counters
The learners involved in this study demonstrated the ability to count the given objects, but they demonstrated that they are at different developmental levels. For example,

L1: lacked object counting skills, after counting 1 to 5, then doubled counted the last two objects. Instead of 7 objects, he ended up counting 9.

L2: counted accurately but was challenged by cardinality. For example, when asked to count the two sets of counters as shown above, L2 counted the first five and then moved on to the second group to 10 but later said that there were 12 counters.

L3: During free play, all L3 did was count each unifix he picked to 10, then decided to connect them together. Surprisingly, when asked to count the two groups together he could not count on from the first 5 counters. He started from one again and instead gave a cardinal response of one group. An indication that he was not able to count on from 5 to 10.

Spatiality and Quantity Indistinct
The two sets of counters shown in Figure 2 below were given to the learners to test their spatiality and quantity distinct skills they were asked to recognise the equivalence.

Researcher: Which ones are many? How do you see there are many?
Researcher: Please count them.
Researcher: How many bottle tops together?
Spacing of the items influenced their quantity recognition even after counting only one of them recognized the equivalence.

L2 and L3 identified the first image as the one with many counters while L1 identified the second image as one with many counters.

When learners assessed their responses with counting and realised that both groups had 5 objects only **L2** said “ziyalingana” meaning they were equal. Both L1 and L3 still remained with their first choices.

Recognition and non-recognition of numeral symbols
Learners matching abilities of objects to numerals were also shown at diverse levels such as the ability to read numeral symbols and the inability to read the numeral symbols.

L1 did not recognise any numeral symbols.
L2 identified all the numerals and matched them with objects representing their number accurately.
L3 managed to count objects correctly, could not recognise 5 and 3 but could match 1, 2 and 4 correctly. L4 was able to count from 1 to 6 in English, and counted the given objects and the number of dots on the play cards, but could not write the symbol 6 when asked to do so.

Turning now to the length of a shoe and an envelope, L5 responded as described below.

![Figure 3: showing envelope lengths](image)

Researcher: Mom says this shoe ends at six, but my brother says it ends at 12 what do you say?
Researcher: Look at the envelope, where should it end?

When asked where the shoe and the envelope ended on the number line (as shown above), L5 said that they ended at 3 and 2, respectively.

Bilingual Code-switching
- **L1:** Counted in isiXhosa his home language and language of instruction but went further to bigger numbers and switched to English number names.
- **L2:** Counted in English numerals but uses some isiXhosa mathematical terminology for sense-making.
- **L3:** Counted in English numerals then used isiXhosa to communicate his strategy.
- **L4:** Counted from 1 to 6 in English yet the question was asked in isiXhosa (the learner’s home language).

Geometric and spatial thinking

L4 was asked to pick up the shapes that looked exactly like the ones drawn below from the container. The task below required learners to identify each of the shapes and to take out one that looks like each one of them from the container.

![Figure 4: Geometric shapes](image)

Researcher: Kweza zinto zininzi ubudlala ngazo ungakwazi ukumatanisa ezifana nazo apha? Zeziphi zithathe? Zifana ngantoni? (Which manipulatives are the same as these, from the ones you were playing with?)

L5 could not select the shapes as required instead only selected the red triangled shapes from the container.

DISCUSSION

The findings highlighted that there are several diverse numerical abilities that learners demonstrated but that are not fully established such as one-to-one correspondence, counting on, cardinality and equality. Secondly, a lack of numeric skills impeded the full realisation of the concepts mentioned, those skills are...
keeping track while counting, reciter, and sequential verbal counting beyond 10. Bilingualism automatically occurs between English and isiXhosa and mathematical language used is from both languages, for example, L1, L2, L3 and L4’s way of using more than one language revealed that most learners do not completely rely on one language to understand Mathematics concepts, even the second language (English) plays a role in their learning. This finding supports Clements and Sarama’s argument which states that for a learner to count properly, the learner must have a progressive skill whereby each object in a set is touched and counted once. The progressive skill is not limited to a certain language of instruction; it is applied in Mathematics despite the language of instruction being used.

Compared to international literature, learner participants in this study entered the Grade R class with haphazard numerical abilities, and none of the concepts were fully realised. Although they are supposed to be counters that can produce numbers, at this stage sub-concepts are not attained. These findings are like those of learners in Macedonia who enter school without preschool experience. They also were at different levels of attaining cardinal principles. Research has consistently demonstrated that these gaps envisage long-term consequences as they predict achievement scores in Grades 1, 3, 5, 8, and high school. This indicates the importance of intervening earlier during preschool to assist learners specifically from low socioeconomic backgrounds. Hence, the proposal of mathematising learners’ games and activities enhances their semi-attained numerical abilities.

This study has shown that although learners are in the same grade, they exhibit different levels to recognise and read numeral symbols, for example, L1’s inability to recognise any numerical symbols confirms previous research findings that students count intentionally or unintentionally because of songs and games they play while learning Mathematics. At this level more is done verbally than in writing as a result students struggled with the writing of mathematical symbols. L2 was able to identify and recognise numerals and matched them with objects representing their number accurately. L3 was able to count objects correctly, could not recognise 5 and 3 but could match 1, 2 and 4 correctly. L4 was able to count from 1 to 6 in English, and counted the given objects and the number of dots on the play cards, but could not write the symbol 6 when asked to do so.

Discussion Summary

The findings of this study have highlighted diverse numerical abilities learners demonstrated that are not fully established, for example, one-to-one correspondence, counting on, cardinality and equality. Secondly, the lack of some numerical skills impedes learners’ full realisation of the concepts mentioned. Those skills are keeping track while counting, reciter, and sequential verbal counting beyond 10. When learners have no solid foundation in numerosity skills, fail to grasp more complex mathematics concepts later in their academic life. This can lead to frustration and disengagement from the subject.

Learners in the same grade exhibit different levels of recognition and reading numerical symbols. For this reason, there is a need for intervention earlier during preschool to assist learners specifically those from low socioeconomic backgrounds to acquire mathematical skills. Schools need to fully support learners as they come from different backgrounds, some do have access to resources while others do not have any access to the resources for learning mathematics, particularly those from low-income homes.

RECOMMENDATIONS

Based on the findings of this study, the researchers recommend the following:

- Grade R Mathematics teachers intervene earlier during preschool to assist learners specifically from low socioeconomic backgrounds and mathematise learners’ play and activities to enhance their semi-attained numerical abilities.
- Grade R teachers and policymakers must target their efforts to close the numeracy gap that exists between young children and ensure that all learners have the opportunity to succeed regardless of their family background.

54 Nikoloska, “Development of the Cardinality Principle in Macedonian Preschool Children.”

55 Ramani and Siegler, “Reducing the Gap in Numerical Knowledge between Low- and Middle-Income Preschoolers.”

57 Feza, “Teaching 5- and 6-Year-Olds to Count: Knowledge of South African Educators.”
Numerosity is a foundational mathematics skill often overlooked in early childhood education, based on the numerosity levels and gaps in grade R, this paper informs the mathematics education community to develop interventions and design the curricula to improve these skills in young children. This can positively impact learners’ long-term academic success and close the numeracy gap which is existing in mathematics achievement between high and low-income children.

CONCLUSION
This study has assessed how young South African children demonstrated number concepts before entering the reception class. This study’s findings suggest that there is a need for more investment in early childhood education, particularly around the area of numerosity. In addition, it is important to teach the area of numerosity early, as numerosity develops in the early years and has a lasting impact on later mathematics achievement. Teaching numerosity for conceptual understanding assists in closing the gap that exists between high and low-income learners. The closure of such a gap assists mathematics teachers in closing the gap between high and low-income status learners in the achievement of mathematics later.

LIMITATIONS
These research findings are transferrable to other contexts to strengthen the study and confirm the findings. It is advisable to interpret these findings with caution as they are based on the data collected from the same cultural group of learners who speak the same home language. The replication of the same research with a different cultural group may yield different findings.

AREAS OF FURTHER STUDIES
The present researchers suggest that further studies can be conducted on:
- Exploring causes of learners’ diverse numerical abilities.
- Investigating how teachers teach number sense in diverse classrooms.
- Exploring the effectiveness of specific interventions on the teaching and learning of numerosity
- Investigating the relationship between numerosity and other mathematics skills

ACKNOWLEDGEMENT
The authors would like to thank all participants who made the study a success.

CONFLICT OF INTEREST
No potential conflict of interest was reported by the authors.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on request from the corresponding author, S.M. Chiphambo. The data is not publicly available due to [restrictions, as the study involved minors and the data contains information that could compromise their privacy].

FUNDING INFORMATION
This work was supported by the National Research Foundation [UID: 136363, 2020-2022].

BIBLIOGRAPHY

https://doi.org/10.1007/s10643-015-0736-z.

ABOUT AUTHORS

Professor Nosisi Nellie Feza – University of Venda, South Africa.

Professor Shakespear Maliketi Chiphambo (Ph.D., M.Ed., B.Ed Honours, B.Ed., PGDip. Ed., Dip.Ed) is a Mathematics Education Lecturer at Walter Sisulu University (WSU). He has over 30 research publications including research and book chapters in different peer-reviewed journals and edited books. Attended and presented at both international and national conferences. He has been serving as a research paper reviewer for the South African International Conference in Education (SAICEd), The 11th European Conference on Education, Eurasia Journal of Mathematics, Science and Technology Education (EJMSTE), National Research Foundation (NRF), Pythagoras journal, Walter Sisulu University, Journal of Education (Journal of the SA Education Research Association (SAERA)) and African Evaluation journal. He is interested in education research with a focus on teaching and learning of geometry and measurement, and early childhood education.